
Math for Game Programmers:
Dual Numbers

Gino van den Bergen
gino@dtecta.com

Introduction

● Dual numbers extend real numbers,
similar to complex numbers.

● Complex numbers adjoin an element i, for
which i2 = -1.

● Dual numbers adjoin an element ε, for
which ε2 = 0.

Complex Numbers

● Complex numbers have the form

 z = a + b i

where a and b are real numbers.

● a = real(z) is the real part, and

● b = imag(z) is the imaginary part.

Complex Numbers (cont’d)

● Complex operations pretty much follow
rules for real operators:

● Addition:
(a + b i) + (c + d i) = (a + c) + (b + d) i

● Subtraction:
(a + b i) – (c + d i) = (a – c) + (b – d) i

Complex Numbers (cont’d)

● Multiplication:

(a + b i) (c + d i) = (ac – bd) + (ad + bc) i

● Products of imaginary parts feed back into
real parts.

Dual Numbers

● Dual numbers have the form

 z = a + b ε

similar to complex numbers.

● a = real(z) is the real part, and

● b = dual(z) is the dual part.

Dual Numbers (cont’d)

● Operations are similar to complex
numbers, however since ε2 = 0, we have:

(a + b ε) (c + d ε) = (ac + 0) + (ad + bc)ε

● Dual parts do not feed back into real
parts!

Dual Numbers (cont’d)

● The real part of a dual calculation is
independent of the dual parts of the inputs.

● The dual part of a multiplication is a
“cross” product of real and dual parts.

Taylor Series

● Any value f(a + h) of a smooth function f
can be expressed as an infinite sum:

where f’, f’’, …, f(n) are the first, second, …,
n-th derivative of f.







 2

!2

)(

!1

)(
)()(h

af
h

af
afhaf

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series and Dual Numbers

● For f(a + b ε), the Taylor series is:

● All second- and higher-order terms
vanish!

● We have a closed-form expression that
holds the function and its derivative.

0
!1

)(
)()(


  b

af
afbaf

Real Functions on Dual Numbers

● Any differentiable real function f can be
extended to dual numbers, as:

 f(a + b ε) = f(a) + b f’(a) ε

● For example,
 sin(a + b ε) = sin(a) + b cos(a) ε

Automatic Differentiation

● Add a unit dual part to the input value of
a real function.

● Evaluate function using dual arithmetic.

● The output has the function value as real
part and the derivate’s value as dual part:

 f(a + ε) = f(a) + f’(a) ε

How does it work?

● Check out the product rule of
differentiation:

● Notice the “cross” product of functions and
their derivatives.

● Recall that
(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε

gfgfgf )(

Automatic Differentiation in C++

● We need some easy way of extending
functions on floating-point types to dual
numbers…

● …and we need a type that holds dual
numbers and offers operators for
performing dual arithmetic.

Extension by Abstraction

● C++ allows you to abstract from the
numerical type through:

● Typedefs

● Function templates

● Constructors and conversion operators

● Overloading

● Traits class templates

Abstract Scalar Type

● Never use built-in floating-point types,
such as float or double, explicitly.

● Instead use a type name, e.g. Scalar,

either as template parameter or as typedef,

 typedef float Scalar;

Constructors

● Built-in types have constructors as well:
● Default: float() == 0.0f

● Conversion: float(2) == 2.0f

● Use constructors for defining constants,
e.g. use Scalar(2), rather than 2.0f or
(Scalar)2 .

Overloading

● Operators and functions on built-in types
can be overloaded in numerical classes,
such as std::complex.

● Built-in types support operators: +,-,*,/

● …and functions: sqrt, pow, sin, …

● NB: Use <cmath> rather than <math.h>.
That is, use sqrt NOT sqrtf on floats.

Traits Class Templates

● Type-dependent constants, such as the machine
epsilon, are obtained through a traits class defined
in <limits>.

● Use std::numeric_limits<Scalar>::epsilon()
rather than FLT_EPSILON in C++.

● Either specialize std::numeric_limits for your

numerical classes or write your own traits class.

Example Code (before)

float smoothstep(float x)

{

 if (x < 0.0f)

 x = 0.0f;

 else if (x > 1.0f)

 x = 1.0f;

 return (3.0f – 2.0f * x) * x * x;

}

Example Code (after)

template <typename T>

T smoothstep(T x)

{

 if (x < T())

 x = T();

 else if (x > T(1))

 x = T(1);

 return (T(3) – T(2) * x) * x * x;

}

Dual Numbers in C++

● C++ has a standard class template
std::complex<T> for complex numbers.

● We create a similar class template
Dual<T> for dual numbers.

● Dual<T> defines constructors, accessors,
operators, and standard math functions.

Dual<T>

template <typename T>

class Dual

{

…

private:

 T mReal;

 T mDual;

};

Dual<T>: Constructor

template <typename T>
Dual<T>::Dual(T real = T(), T dual = T())
 : mReal(real)
 , mDual(dual)
{}

…
Dual<Scalar> z1; // zero initialized

Dual<Scalar> z2(2); // zero dual part

Dual<Scalar> z3(2, 1);

Dual<T>: operators

template <typename T>

Dual<T> operator*(Dual<T> a, Dual<T> b)

{

 return Dual<T>(

 a.real() * b.real(),

 a.real() * b.dual() +

 a.dual() * b.real()

);

}

Dual<T>: Standard Math

template <typename T>

Dual<T> sqrt(Dual<T> z)

{

 T tmp = sqrt(z.real());

 return Dual<T>(

 tmp,

 z.dual() / (T(2) * tmp)

);

}

Curve Tangent

● For a 3D curve

The tangent is

],[where)),(),(),(()(battztytxt p

))(),(),(()(where,
)(

)(
tztytxt

t

t





p

p

p

Curve Tangent

● Curve tangents are often computed by
approximation:

for tiny values of h.

htt
tt

tt





01

01

01 where,
)()(

)()(

pp

pp

Actual
tangent P(t0)

P(t1)

Curve Tangent: Bad #1

t1 drops outside
parameter domain

(t1 > b)

P(t0)

P(t1)

Curve Tangent: Bad #2

Curve Tangent: Duals

● Make a curve function template using a
class template for 3D vectors:

 template <typename T>

 Vector3<T> curveFunc(T x);

Curve Tangent: Duals (cont’d)

● Call the curve function using a dual
number x = Dual<Scalar>(t, 1),
(add ε to parameter t):

Vector3<Dual<Scalar> > y =

 curveFunc(Dual<Scalar>(t, 1));

Curve Tangent: Duals (cont’d)

● The real part is the evaluated position:
Vector3<Scalar> position = real(y);

● The normalized dual part is the tangent at
this position:
Vector3<Scalar> tangent =

 normalize(dual(y));

Line Geometry

● The line through points p and q can be
expressed explicitly as:

 x(t) = p + (q – p)t, and

● Implicitly, as a set of points x for which:

 (q – p) × x + p × q = 0

q

p
0

p×q

Line Geometry

p × q is orthogonal to the plane 0pq, and its length is equal
to the area of the parallellogram spanned by p and q

q

p
0

p×q x

Line Geometry

All points x on the line pq span with q – p a parallellogram
that has the same area and orientation as the one spanned
by p and q.

Plücker Coordinates

● Plücker coordinates are 6-tuples of the
form (ux, uy, uz, vx, vy, vz), where

 u = (ux, uy, uz) = q – p, and

 v = (vx, vy, vz) = p × q

Plücker Coordinates (cont’d)

● For (u1:v1) and (u2:v2) directed lines, if

 u1 • v2 + v1 • u2 is

zero: the lines intersect
positive: the lines cross right-handed
negative: the lines cross left-handed

If the signs of permuted dot products of the ray
and edges are all equal, then the ray intersects the
triangle.

Triangle vs. Ray

Plücker Coordinates and Duals

● Dual 3D vectors conveniently represent
Plücker coordinates:

 Vector3<Dual<Scalar> >

● For a line (u:v), u is the real part and v is
the dual part.

Dot Product of Dual Vectors

● The dot product of dual vectors u1 + v1ε
and u2 + v2ε is a dual number z, for which

 real(z) = u1 • u2, and
 dual(z) = u1 • v2 + v1 • u2

● The dual part is the permuted dot product

Angle of Dual Vectors

● For a and b dual vectors, we have

where θ is the angle and d is the signed
distance between the lines a and b.













 


ba

ba
arccos d

Translation

● Translation of lines only affects the dual
part. Translation of line pq over c gives:

● Real: (q + c) – (p + c) = q - p

● Dual: (p + c) × (q + c)
 = p × q + c × (q – p)

● q – p pops up in the dual part!

Rotation

● Real and dual parts are rotated in the
same way. For a rotation matrix R:

● Real: Rq – Rp = R(q – p)

● Dual: Rp × Rq = R(p × q)

● The latter holds for rotations only! That is,
R performs no scaling or reflection.

Rigid-Body Transform

● For rotation matrix R and translation vector c,
the dual 3×3 matrix M with
 real(M) = R, and

 dual(M) =

maps Plücker coordinates to the new reference
frame.

RRc

























0

0

0

][

xy

xz

yz

cc

cc

cc

Screw Theory

● A screw motion is a rotation about a line
and a translation along the same line.

● “Any rigid body displacement can be
defined by a screw motion.” (Chasles)

Chasles’ Theorem (Sketchy Proof)

● Decompose translation into a term along
the line and a term orthogonal to the line.

● Translation orthogonal to the axis of
rotation offsets the axis.

● Translation along the axis does not care
about the position of the axis.

Example: Rolling Ball

Dual Quaternions

● Unit dual quaternions represent screw
motions.

● The rigid body transform over a unit
quaternion q and vector c is:

 Here, c is a quaternion
 with zero scalar part.

cqq
2

1


Where is the Screw?

● A unit dual quaternion can be written as

where θ is the rotation angle, d, the
translation distance, and u + vε, the line
given in Plücker coordinates.

)(
2

sin
2

cos 


vu 






 







  dd

Two Conjugates

● For dual quaternion q = qr + qdε, the dual
conjugate is

● And the quaternion conjugate is

dr qqq 

  dr qqq

Rigid-Body Transform Revisited

● Similar to 3D vectors, Plücker coordinates
can be transformed using dual quaternions.

● The mapping of a dual vector v according
to a screw motion q is

 v’ = q v q*

Traditional Skinning

● Bones are defined by transformation
matrices Ti relative to the rest pose.

● Each vertex is transformed as

Here, λi are blend weights.

pTTpTpTp)(' 1111 nnnn   

Traditional Skinning (cont’d)

● A weighted sum of matrices is not
necessarily a rigid-body transformation.

● Most notable artifact is “candy wrapper”:
The skin collapses while transiting from one
bone to the other.

Candy Wrapper

Dual Quaternion Skinning

● Use a blend operation that always returns
a rigid-body transformation.

● Several options exists. The simplest one
is a normalized lerp of dual quaternions:

nn

nn

qq

qq
q














11

11

Dual Quaternion Skinning (cont’d)

● Can the weighted sum of dual quaternions
ever get zero?

● Not if all dual quaternions lie in the same
hemisphere.

● Observe that q and –q are the same
pose. If necessary, negate each qi to dot
positively with q0.

Rigid-Body Transform Revisited2

● Points can also be transformed by dual
quaternions. For a point p, the image under
transformation p’ is obtained by

● Notice the use of both dual and
quaternion conjugate!

*)1('1 qpqp  

Further Uses

● Motor Algebra: Linear and angular
velocity of a rigid body combined in a dual
3D vector.

● Spatial Vector Algebra: Featherstone
uses 6D vectors for representing velocities
and forces in robot dynamics.

Conclusions

● Abstract from numerical types in your
C++ code.

● Differentiation is easy, fast, and exact
with dual numbers.

● Dual numbers have other uses as well.
Explore yourself!

References

● D. Vandevoorde and N. M. Josuttis. C++ Templates: The
Complete Guide. Addison-Wesley, 2003.

● K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing
News, Vol. 11, No. 1

● R. Featherstone. Robot Dynamics Algorithms. Kluwer
Academic Publishers, 1987.

● L. Kavan et al. Skinning with dual quaternions. Proc. ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 2007

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html

Thank You!

● For sample code, check out free* MoTo
C++ template library on:

 http://www.dtecta.com

(*) gratis (as in “free beer”) and libre (as in “free speech”)

