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Introduction 

● Dual numbers extend real numbers, 
similar to complex numbers.  

● Complex numbers adjoin an element i, for 
which i2 = -1. 

● Dual numbers adjoin an element ε, for 
which ε2 = 0. 

 



Complex Numbers 

● Complex numbers have the form 
 
  z = a + b i 
 
where a and b are real numbers. 

● a = real(z) is the real part, and 

● b = imag(z) is the imaginary part. 

 



Complex Numbers (cont’d) 

● Complex operations pretty much follow 
rules for real operators: 

● Addition:  
(a + b i) + (c + d i) = (a + c) + (b + d) i 

● Subtraction:  
(a + b i) – (c + d i) = (a – c) + (b – d) i 

 



Complex Numbers (cont’d) 

● Multiplication:  
 
(a + b i) (c + d i) = (ac – bd) + (ad + bc) i 
  

● Products of imaginary parts feed back into 
real parts. 

 



Dual Numbers 

● Dual numbers have the form 
 
  z = a + b ε  
 
similar to complex numbers. 

● a = real(z) is the real part, and 

● b = dual(z) is the dual part. 



Dual Numbers (cont’d) 

● Operations are similar to complex 
numbers, however since ε2 = 0, we have: 
 
(a + b ε) (c + d ε) = (ac + 0) + (ad + bc)ε 

 

● Dual parts do not feed back into real 
parts! 

 



Dual Numbers (cont’d) 

● The real part of a dual calculation is 
independent of the dual parts of the inputs. 
 

● The dual part of a multiplication is a 
“cross” product of real and dual parts. 



Taylor Series 

● Any value f(a + h) of a smooth function f 
can be expressed as an infinite sum: 
 
 
 
 
where f’, f’’, …, f(n) are the first, second, …, 
n-th derivative of f. 
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Taylor Series Example 
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Taylor Series and Dual Numbers 

● For f(a + b ε), the Taylor series is: 

 

 

● All second- and higher-order terms 
vanish! 

● We have a closed-form expression that 
holds the function and its derivative. 
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Real Functions on Dual Numbers 

● Any differentiable real function f can be 
extended to dual numbers, as: 
 
 f(a + b ε) = f(a) + b f’(a) ε 
 

● For example,  
 sin(a + b ε) = sin(a) + b cos(a) ε 

 



Automatic Differentiation 

● Add a unit dual part to the input value of 
a real function. 

● Evaluate function using dual arithmetic. 

● The output has the function value as real 
part and the derivate’s value as dual part: 
 
 f(a + ε) = f(a) + f’(a) ε 

 



How does it work? 

● Check out the product rule of 
differentiation: 

● Notice the “cross” product of functions and 
their derivatives.  

● Recall that 
(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε 
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Automatic Differentiation in C++ 

● We need some easy way of extending 
functions on floating-point types to dual 
numbers… 

● …and we need a type that holds dual 
numbers and offers operators for 
performing dual arithmetic. 



Extension by Abstraction 

● C++ allows you to abstract from the 
numerical type through: 

● Typedefs  

● Function templates 

● Constructors and conversion operators 

● Overloading 

● Traits class templates  

 



Abstract Scalar Type 

● Never use built-in floating-point types, 
such as float or double, explicitly. 

● Instead use a type name, e.g. Scalar, 

either as template parameter or as typedef, 
 
 typedef float Scalar; 

 



Constructors 

● Built-in types have constructors as well: 
● Default: float() == 0.0f 

● Conversion: float(2) == 2.0f   

● Use constructors for defining constants, 
e.g. use Scalar(2), rather than 2.0f or 
(Scalar)2 . 

 



Overloading 

● Operators and functions on built-in types 
can be overloaded in numerical classes, 
such as std::complex. 

● Built-in types support operators: +,-,*,/ 

● …and functions: sqrt, pow, sin, … 

● NB: Use <cmath> rather than <math.h>. 
That is, use sqrt NOT sqrtf on floats. 



Traits Class Templates 

● Type-dependent constants, such as the machine 
epsilon, are obtained through a traits class defined 
in <limits>. 

● Use std::numeric_limits<Scalar>::epsilon() 
rather than FLT_EPSILON in C++.  

● Either specialize std::numeric_limits for your 

numerical classes or write your own traits class. 



Example Code (before) 

float smoothstep(float x) 

{ 

    if (x < 0.0f) 

        x = 0.0f; 

    else if (x > 1.0f) 

        x = 1.0f; 

    return (3.0f – 2.0f * x) * x * x; 

}  

 



Example Code (after) 

template <typename T> 

T smoothstep(T x) 

{ 

    if (x < T()) 

        x = T(); 

    else if (x > T(1)) 

        x = T(1); 

    return (T(3) – T(2) * x) * x * x; 

} 

 



Dual Numbers in C++ 

● C++ has a standard class template 
std::complex<T> for complex numbers. 

● We create a similar class template 
Dual<T> for dual numbers.  

● Dual<T> defines constructors, accessors, 
operators, and standard math functions. 

 



Dual<T> 

template <typename T> 

class Dual 

{  

… 

private: 

  T mReal; 

   T mDual;  

}; 

 



Dual<T>: Constructor 

template <typename T> 
Dual<T>::Dual(T real = T(), T dual = T()) 
    : mReal(real) 
    , mDual(dual) 
{} 
 

… 
Dual<Scalar> z1; // zero initialized 

Dual<Scalar> z2(2); // zero dual part 

Dual<Scalar> z3(2, 1);  
  

 



Dual<T>: operators 

template <typename T> 

Dual<T> operator*(Dual<T> a, Dual<T> b) 

{ 

  return Dual<T>( 

             a.real() * b.real(), 

             a.real() * b.dual() + 

                 a.dual() * b.real() 

         ); 

} 

 



Dual<T>: Standard Math 

template <typename T> 

Dual<T> sqrt(Dual<T> z) 

{ 

    T tmp = sqrt(z.real()); 

    return Dual<T>( 

            tmp,  

            z.dual() / (T(2) * tmp) 

           ); 

} 

 



Curve Tangent 

● For a 3D curve 
 
 
 
The tangent is 
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Curve Tangent 

● Curve tangents are often computed by 
approximation:  
 
 
 
 
for tiny values of h. 
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Actual 
tangent P(t0) 

P(t1) 

Curve Tangent: Bad #1 



t1 drops outside 
parameter domain 

(t1 > b) 

P(t0) 

P(t1) 

Curve Tangent: Bad #2 



Curve Tangent: Duals 

● Make a curve function template using a 
class template for 3D vectors: 
 
 template <typename T> 

 Vector3<T> curveFunc(T x); 

 



Curve Tangent: Duals (cont’d) 

● Call the curve function using a dual 
number x = Dual<Scalar>(t, 1),  
(add ε to parameter t): 
 
Vector3<Dual<Scalar> > y = 

 curveFunc(Dual<Scalar>(t, 1)); 

 

 



Curve Tangent: Duals (cont’d) 

● The real part is the evaluated position: 
Vector3<Scalar> position = real(y); 

 

● The normalized dual part is the tangent at 
this position: 
Vector3<Scalar> tangent =  

    normalize(dual(y)); 

 



Line Geometry 

● The line through points p and q can be 
expressed explicitly as: 
  
 x(t) = p + (q – p)t, and 
 

● Implicitly, as a set of points x for which: 
 
 (q – p) × x + p × q = 0 

 



q 
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0 

p×q 

Line Geometry 

p × q is orthogonal to the plane 0pq, and its length is equal 
to the area of the parallellogram spanned by p and q 
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Line Geometry 

All points x on the line pq span with q – p a parallellogram 
that has the same area and orientation as the one spanned 
by p and q. 

 



Plücker Coordinates 

● Plücker coordinates are 6-tuples of the 
form (ux, uy, uz, vx, vy, vz), where 
    
 u = (ux, uy, uz) = q – p,   and 
 
 v = (vx, vy, vz) = p × q  



Plücker Coordinates (cont’d) 

● For (u1:v1) and (u2:v2) directed lines, if 
  
  u1 • v2 + v1 • u2     is 

    
zero:  the lines intersect 
positive: the lines cross right-handed 
negative: the lines cross left-handed 

 



If the signs of permuted dot products of the ray 
and edges are all equal, then the ray intersects the 
triangle. 

Triangle vs. Ray 



Plücker Coordinates and Duals 

● Dual 3D vectors conveniently represent 
Plücker coordinates: 
 
 Vector3<Dual<Scalar> > 

 

● For a line (u:v), u is the real part and v is 
the dual part.  

 



Dot Product of Dual Vectors 

● The dot product of dual vectors u1 + v1ε 
and u2 + v2ε is a dual number z, for which 
 
 real(z) = u1 • u2, and 
 dual(z) = u1 • v2 + v1 • u2  

 

● The dual part is the permuted dot product 



Angle of Dual Vectors 

● For a and b dual vectors, we have 
 
 
  
where θ is the angle and d is the signed 
distance between the lines a and b. 
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Translation 

● Translation of lines only affects the dual 
part. Translation of line pq over c gives: 

● Real: (q + c) – (p + c) = q - p 

● Dual: (p + c) × (q + c)   
      = p × q + c × (q – p) 

● q – p pops up in the dual part! 



Rotation 

● Real and dual parts are rotated in the 
same way. For a rotation matrix R: 

● Real: Rq – Rp = R(q – p) 

● Dual: Rp × Rq = R(p × q)  

● The latter holds for rotations only! That is, 
R performs no scaling or reflection.  

 



Rigid-Body Transform 

● For rotation matrix R and translation vector c, 
the dual 3×3 matrix M with 
 real(M) = R, and  
 
 dual(M) = 
 
maps Plücker coordinates to the new reference 
frame. 
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Screw Theory 

● A screw motion is a rotation about a line 
and a translation along the same line. 
 

● “Any rigid body displacement can be 
defined by a screw motion.” (Chasles) 

 



Chasles’ Theorem (Sketchy Proof)  

● Decompose translation into a term along 
the line and a term orthogonal to the line. 

● Translation orthogonal to the axis of 
rotation offsets the axis. 

● Translation along the axis does not care 
about the position of the axis. 

 



Example: Rolling Ball 



Dual Quaternions 

● Unit dual quaternions represent screw 
motions.  

● The rigid body transform over a unit 
quaternion q and vector c is: 
 
    Here, c is a quaternion 
    with zero scalar part. 
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Where is the Screw? 

● A unit dual quaternion can be written as 
 
 
 
where θ is the rotation angle, d, the 
translation distance, and u + vε, the line 
given in Plücker coordinates. 
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Two Conjugates 

● For dual quaternion q = qr + qdε, the dual 
conjugate is  

 

● And the quaternion conjugate is     

dr qqq 

  dr qqq



Rigid-Body Transform Revisited 

● Similar to 3D vectors, Plücker coordinates 
can be transformed using dual quaternions. 

● The mapping of a dual vector v according 
to a screw motion q is  
 
   v’ = q v q* 
  
 
   



Traditional Skinning 

● Bones are defined by transformation 
matrices Ti relative to the rest pose. 

● Each vertex is transformed as 
 
 
 
Here, λi are blend weights. 
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Traditional Skinning (cont’d) 

● A weighted sum of matrices is not 
necessarily a rigid-body transformation. 

● Most notable artifact is “candy wrapper”: 
The skin collapses while transiting from one 
bone to the other. 



Candy Wrapper 



Dual Quaternion Skinning 

● Use a blend operation that always returns 
a rigid-body transformation. 

● Several options exists. The simplest one 
is a normalized lerp of dual quaternions:   
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Dual Quaternion Skinning (cont’d) 

● Can the weighted sum of dual quaternions 
ever get zero? 

● Not if all dual quaternions lie in the same 
hemisphere. 

● Observe that q and –q are the same 
pose. If necessary, negate each qi to dot 
positively with q0. 



Rigid-Body Transform Revisited2  

● Points can also be transformed by dual 
quaternions. For a point p, the image under 
transformation p’ is obtained by 

 

 

● Notice the use of both dual and 
quaternion conjugate! 
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Further Uses 

● Motor Algebra: Linear and angular 
velocity of a rigid body combined in a dual 
3D vector. 

● Spatial Vector Algebra: Featherstone 
uses 6D vectors for representing velocities 
and forces in robot dynamics. 

 



Conclusions 

● Abstract from numerical types in your 
C++ code.  

● Differentiation is easy, fast, and exact 
with dual numbers. 

● Dual numbers have other uses as well. 
Explore yourself!  
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Thank You! 

● For sample code, check out free* MoTo 
C++ template library on: 
 
        http://www.dtecta.com  

 
 
(*) gratis (as in “free beer”) and libre (as in “free speech”) 


