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Collision Detection  

● Find all pairs of objects that are colliding 
now, or will collide over the next frame. 

● Compute data for response: 

● Contact normal 

● Contact point 

● Penetration depth 

 



The Problem 



The Problem 



The Solution 



Construct Plausible Trajectories 

● Limited to trajectories involving 
piecewise constant linear velocities. 

● Angular velocities are ignored. Rotations 
are considered instantaneous. 

 

 



No Continuous Rotations? 

● Solving continuous rotations is a lot 
trickier, so we dodge the issue. 

● Tunneling may occur for rotating objects, 
but is less visible and often acceptable.  

● Only doing continuous translations fixes 
our problems and is doable in real time. 

 



Collision Objects 

● Static environment (buildings, terrain) is 
typically modeled using polygon meshes. 

● Moving objects (player, NPCs, vehicles, 
projectiles) are typically convex shapes.  

● We need to detect convex-convex and 
convex-mesh collisions. 

 



Convex Shapes 



Polytopes 



Quadric Shapes 



Configuration Space 

● The configuration space obstacle (CSO) 
of objects A and B is the set of all vectors 
from a point of B to a point of A. 
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Configuration Space (cont’d) 

● CSO is basically one object dilated by the 
other: 
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Translation 

● Translation of A and/or B results in a 
translation of A – B.   

 



Rotation 

● Rotation of A and/or B changes the 
shape of A – B.  

 



Configuration Space? 

● Collision queries on a pair of convexes 
are reduced to queries on the position of 
the origin with respect to the CSO. 

● Point queries are easier than queries on 
pairs of shapes.   



Queries: Distance 

● The distance between two objects is the 
distance from the origin to the CSO. 
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Queries: Intersection Testing 

● The objects intersect (have a common 
point) if the origin is contained by the 
CSO. 
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Queries: Penetration Depth 

● The penetration-depth vector is the 
shortest translation that resolves a 
penetration, i.e., the point on the CSO’s 
boundary closest to the origin. 
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Queries: Shape Casting 

● Finding collisions that occur over a frame 
for A translated over s and B over t boils 

down to a ray cast from the origin onto 
the CSO along the vector r = t – s. 
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Ray Query on the CSO 



Separating Axis 
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Separating Axis Theorem (SAT) 

● For each pair of disjoint polytopes, of 
which at least one has a volume, there 
exists a separating axis that is 
orthogonal to:  

● a face of either polytope, or 

● an edge from each polytope 



SAT Sketchy Proof 

● The CSO of polytopes is a polytope and 
has a volume.  

● For disjoint polytopes, the origin lies on 
the outside of at least one face of the 
CSO.  

● A face of the CSO is either the CSO of a 
face and a vertex or of two edges. 

 



Separating Axis Method 

● Test all face normals and all cross products of 
edge directions. 

● If none of these vectors yield a separating axis 
then the polytopes must intersect. 

● Given polytopes with resp. f1 and f2 faces and e1 
and e2 edge directions, we need to test at most 
 f1 +  f2 + e1 *e2 axes.   

 



Polytope 1 Polytope 2 #Axes 

 

Line segment Box 

Triangle Box 

Box Box 

Tetrahedron Tetrahedron 

Separating Axis Method 



Polytope 1 Polytope 2 #Axes 

 

Line segment Box 0 + 3 + 1*3 = 6 

Triangle Box 

Box Box 
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Separating Axis Method 



Polytope 1 Polytope 2 #Axes 

 

Line segment Box 0 + 3 + 1*3 = 6 

Triangle Box 1 + 3 + 3*3 = 13 

Box Box 

Tetrahedron Tetrahedron 
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Polytope 1 Polytope 2 #Axes 

 

Line segment Box 0 + 3 + 1*3 = 6 

Triangle Box 1 + 3 + 3*3 = 13 

Box Box 3 + 3 + 3*3 = 15 

Tetrahedron Tetrahedron 
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Polytope 1 Polytope 2 #Axes 

 

Line segment Box 0 + 3 + 1*3 = 6 

Triangle Box 1 + 3 + 3*3 = 13 

Box Box 3 + 3 + 3*3 = 15 

Tetrahedron Tetrahedron 4 + 4 + 6*6 = 44 

Separating Axis Method 



Separating Axis Queries 

● Suitable for intersection testing, most notably 
in bounding box hierarchies. 

● Too expensive for general polytopes due to 
O(n3) complexity. 

● In case of intersection, the axis for which 
overlap is shallowest is a proper direction for 
the penetration depth vector.  



GJK Does It All 

● GJK is an iterative method that 
computes closest points. 

● The GJK ray cast can perform continuous 
collision detection. 

● The expanding polytope algorithm (EPA) 
returns the penetration-depth vector. 



GJK Algorithm 

● Approximate the point of the CSO closest 
to the origin by generating a sequence of 
simplices inside the CSO. 

● A simplex is a point, a line segment, a 
triangle, or a tetrahedron. 

● Each new simplex lies closer to the origin 
than its predecessor. 



GJK Algorithm (cont’d) 

● Simplex vertices are computed using 
support mappings. (Definition follows.) 

● Terminate as soon as the current simplex 
is close enough.  

● In case of an intersection, the simplex 
contains the origin.  



Support Mappings 

● A support mapping sA of an object A maps 
a vector v to a point of A that lies furthest 
in the direction of v.  
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Support Mappings 
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● Shapes can be translated, rotated, and scaled. For 
T(x) = Bx + c, we have 
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Affine Transformation 



● Convex hulls of arbitrary convex shapes are readily 
available. 
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Convex Hull 



● Shapes can be fattened by Minkowski addition.  
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Minkowski Sum 



GJK Steps (1/6) 

● Suppose we have a simplex inside the 
CSO… 



● …and the point v of the simplex closest to 

the origin. 
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GJK Steps (2/6) 



● Compute support point w = sA-B(-v). 
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GJK Steps (3/6) 



● Add support point w to the current 

simplex. 

w

GJK Steps (4/6) 



● Compute the closest point v’ of the new 

simplex. 
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GJK Steps (5/6) 



● Discard all vertices that do not contribute 
to v’. 
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GJK Steps (6/6) 



Separating Axis 

● If only an intersection test is needed then 
let GJK terminate as soon as the lower 
bound v∙w becomes positive. 

● For a positive lower bound v∙w, the vector 
v is a separating axis. 
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● The supporting 
plane through w 

separates the 
origin from the 
CSO. 
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Separating Axis (cont’d) 



Separating Axes and Coherence 

● Separating axes can be cached and reused as 
initial v in future tests on the same object pair. 

● When the degree of frame coherence is high, the 
cached v is likely to be a separating axis in the 
new frame as well. 

● An incremental version of GJK takes roughly one 
iteration per frame for smoothly moving objects.  
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GJK Ray Cast 

● Do a standard GJK iteration, and use the 
support planes as clipping planes. 

● Each time the ray is clipped, the clip point  
λr becomes the new origin. 

● …and the new simplex is the last-found 
support point w wrt the new origin. 

● The normal -v of the last clipping plane is 
the normal at the hit point. 



The vector -v is the 

latest normal. 
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GJK Ray Cast 



● Accuracy can be traded for performance 
by tweaking the error tolerance εtol. 

● A greater tolerance results in fewer 
iterations but less accurate hit points and 
normals. 

Accuracy vs. Performance 



Accuracy vs. Performance 

εtol = 10-7, avg. time: 3.65 μs @ 2.6 GHz  



Accuracy vs. Performance 

εtol = 10-6, avg. time: 2.80 μs @ 2.6 GHz 



Accuracy vs. Performance 

εtol = 10-5, avg. time: 2.03 μs @ 2.6 GHz 



Accuracy vs. Performance 

εtol = 10-4, avg. time: 1.43 μs @ 2.6 GHz 



Accuracy vs. Performance 

εtol = 10-3, avg. time: 1.02 μs @ 2.6 GHz 



Accuracy vs. Performance 

εtol = 10-2, avg. time: 0.77 μs @ 2.6 GHz 



Accuracy vs. Performance 

εtol = 10-1, avg. time: 0.62 μs @ 2.6 GHz 



GJK Algorithm: Pros 

● Extremely versatile:  

● Applicable to any combination of convex shape 
types. 

● Computes distances, common points, and 
separating axes. 

● Can be tailored for finding space-time collisions. 

● Allows a smooth trade-off between accuracy 
and speed.  



GJK Algorithm: Pros (cont'd) 

● Performs well:  

● Exploits frame coherence. 

● Competitive with dedicated solutions for 
polytopes (Lin-Canny, V-Clip, SWIFT) . 

● Despite its conceptual complexity, 
implementing GJK is not too difficult. 

● Small code size.   



GJK Algorithm: Cons 

● Difficult to grasp: 

● Concepts from linear algebra and convex 
analysis (determinants, Minkowski addition),  
take some time to get comfortable with. 

● Maintaining a “geometric” mental image of the 
workings of the algorithm is challenging and not 
very helpful. 



GJK Algorithm: Cons (cont'd) 

● Suffers from numerical issues: 

● Termination is governed by predicates that rely 
on tolerances.  

● Despite the use of tolerances, certain “hacks” 
are needed in order to guarantee termination in 
all cases. 

● Using 32-bit floating-point numbers is doable 
but tricky. 



Resting Contacts 

● Contact data for resting contacts are 
obtained through a hybrid approach. 

● Objects are dilated slightly to add a skin.  

● For interpenetrations that are only skin-
deep the closest points of the “bones” 
give us the contact data.  



Shallow Interpenetrations 



Resting Contacts 

● For deeper interpenetrations contact 
data are obtained from the penetration-
depth vector. 

● This should only be necessary in 
emergencies.    



Deep Interpenetrations 



Meshes Have Bumpy Edges 



Solving Bumpy Edges 

● Obtain barycentric coordinates of the 
closest point returned by GJK. 

● Use these coordinates to interpolate the 
vertex normals. 

● Similar to Phong shading: Use a 
normalized lerp. 

 



Smooth Interpolated Normals 
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Thank You! 

» For papers and other information, check: 
 
        www.dtecta.com  
   


